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Summary 

This paper describes a numerical technique for identifying and locating a specific 
groundwater pollution source using data from a small number of monitoring wells. The 
technique, a modified finite element model, uses a unique system sensitivity theorem and 
is iterative in that a series of estimates and verifications are made until convergence occurs 
at the actual source. 

After description of the technique, a hypothetical problem is solved illustrating the 
computational procedure. A continuation of the study will illustrate the technique, using 
actual data from monitoring wells and known pollution sources. 

Introduction 

Having sufficient observation well data on a particular pollutant in the 
groundwater, one can plot concentration contours which will hopefully iden- 
tify the pollution source [l] . However, even with a large amount of data, 
results are approximate at best. Furthermore, the time involved in collecting 
and analyzing the samples is large and the subsequent cost can be prohibitive. 

A far more practical, and in many cases equally accurate, procedure is to 
use a computer model to simulate the flow with a limited amount of well 
data to upgrade the solution as it is in progress. In general, these models 
assume constant dispersivity of a contaminant in the aquifer and a steady 
state flow field, which are reasonable first approximations. ln this manner, 
locating the pollution source is now equivalent to solving the identification 
problem of a linear dynamic system. 

The acquifer parameter identification problems, or so called inverse prob- 
lems, have been investigated,for the past 10-15 years. Faust and Mercer [2] 
give a brief account of its recent development. In general, the calculation 
procedure for groundwater flow consists of finding a set of parameters (trans- 
missivity, storage coefficient, sources, etc.) that minimizes deviations between 
observed and calculated values of hydraulic head. Thus, for steady state flow 
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problems, the criterion adopted to define the optimal set of parameters is to 
minimize : 

5 (hi -iii)2 (1) 
i=l 

where hi and Xi are the observed and calculated heads at node i for a total of 
M observations. For the unsteady state flow problems the criterion function 
is the minimization of: 

5 6 (hij -&i,j)2 C-3 
i=l j=l 

where Xii and hi,i are the calculated and the observed heads made at the ith 
discretized point at time tj, where j = 1,2, . . . , T. 

Several methods are available in order to achieve the minimization. Cooley 
[ 31 derived the modified Gauss-Newton procedures after linearizing the 
steady state equation using a similar technique to that used by Yeh and Taux 
[ 41. Frind and Pinder [ 51 solved the inverse problem for transmissivity by 
the Galerkin finite element approach using steady state hydraulic heads as 
input data. For the dynamic system, Yeh [6] presents a good review on the 
methods of aquifer parameter estimation for unsteady state flow in an uncon- 
fined aquifer. Methods such as quasi-linearization, maximum principle and 
gradient method, influence coefficient methods and the minimax-linear pro- 
gramming approach have been presented in detail for achieving the minimiza- 
tion. 

The application of the system’s approach, however, for the identification of 
a groundwater pollution source similar to that for aquifer parameter iden- 
tification seems to have been overlooked by previous researchers. Only recent- 
ly a method based on the combined use of linear programming and simula- 
tion has been proposed [7] . In fact, if a steady-state flow field is assumed, 
the system control equation is linear. The criterion is then the minimization 
of the following expression: 

Jt = 5 (Ui,t -%,t)’ (3) 
j=l 

in which iii,t and Ui t are the calculated and observed concentration for the 
ith well, corresponding to time t. The matrix equation resulting from the 
finite element discretization for the mass transport equation can be written: 

M(c) + (K-A +E)(c) = i-g}. (4) 

The notations are defined later in eqns. (lo)-(15). The location and the 
strength of the pollution source are contained in the vector Cp ) . The esti- 
mate, (p” ) , approaches the true value of (p } as Jt approaches a minimum 
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value. The method adopted in this study for achieving the minimization is 
based on system sensitivity theory. 

The system sensitivity theory is a branch of modern control theory. Con- 
trol engineers often face the assignment to design highly sophisticated dynam- 
ic systems with prescribed or optimal behavior on the basis of a mathematical 
model. The results are then useless in practice if they prove to be very sen- 
sitive to parameter changes. With the use of feedback, the sensitivity analysis 
provides the engineers with methods for investigating or minimizing the 
effects of such parameter deviation. The theory for sensitivity analyses is 
known as sensitivity theory. 

One of the applications of the sensitivity theory is for parameter identifica- 
tion. Equation (4) represents the system equation of groundwater pollution 
transport with state variable {c } , and (p } is the parameter to be identified. 
With the feedback (c as measured), (17 ) is improved at each subsequent time 
by calculating the so called trajectory function, {&//a~}, and adding it to 
(p”} for the next time step. Some mathematical details will be described in 
the next section. 

This paper, which follows one showing the essential outline of the tech- 
nique [8] , is aimed at illustrating feasibility using hypothetical data. There is 
sufficient information presented here, however, that one needs not refer back 
to the original reference. This paper will be followed by a paper which uses 
actual field data. The following stage is to extend the technique to the solu- 
tion of three-dimensional problems. This information will be forthcoming as 
the program continues. 

Theoretical background 

Governing equations of pollution transport 
The governing equation of pollutant transport in porous media is the fol- 

lowing (Freeze and Cherry [ 91) : 

ac 
nR-=n 

at 
DxxE+D,zyE 

- [$ (V,c) +; (vyc)] -nnhRc + Qc*, 

(5) 

in which c = concentration of the pollutant; R = 1 + psk/n = retardation fac- 
tor; ps = bulk density of the porous medium; k = distribution coefficient of 
the pollutant; n = porosity of the porous medium ; D,, D,, Dyx, D,, = 
component of dispersion tensor; V,, V, = Darcian velocity component; A = 
1st order decay constant; c* = concentration of the source fluid; and Q = 
flow rate of the source fluid. 
Let L denote the operator on c in eqn. (5), thus 

Lc=O. (6) 
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For the finite element method: 

C Q i?= ZCj(t)Ni = {N}T {C} (7) 

where (N} T is the transpose of the interpolation function, IN). The residue 
becomes Le. The principle of Galerkin method requires that 

< LC,Wi >B = 0 . (8) 

Equation (8) states that the inner product of Lc^ and the weighting function 
Wi over the solution domain B vanishes. 

The integrations in eqn. (8) are now carried out and the results are ex- 
pressed in matrix and vector notation as follows (Yeh and Ward [lo] ) 

{c}~[M(~} + (K-A +E) (c} - i-p)] = 0 (9) 

in which 

Ii) 

K 

A 

E 

M 

= JJ nhR (W} (NIT dxdy 
B 

= 
Jl- nR{W}{N)T d.rdy 

B 

(PI =ss Qc*UW=b + C#D,$ +&I, $ 
B S 

- 

3C af.2 
nDyx--g+nDyy--Vycny 

aY ) 1 IWws - 

(11) 

(12) 

(13) 

(14) 

V,c nx 
1 

(15) 

The area integral on the right hand side of eqn. (15) represents the “load” 
from the “source fluid”, while the line integral accounts for the boundary 
contribution. If the boundary conditions prescribed are of Neumann type 
with normal derivatives equal to zero, the line integral on the right hand side 
of eqn. (15) disappears and 
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For a single isolated source Qc* can be expressed as 

Qc* = q6 (X - x*,y -y*) (17) 

where 6 is the Dirac Delta function, (x*,y *) are the global coordinates of the 
source point location and q is the strength of the source. Now, substitute 
eqn. (17) into eqn. (16) and integrate. It can be shown that 

The vector has zero entries except at the “source” node where the entry value 
isq. 

Two most important advantages of the finite element method over the 
finite difference method are its ability to handle complex boundaries and 
normal derivatives, In the time dimension, these advantages are not present so 
the finite difference method will be used for the time derivative in eqn. (9). 

With finite difference in time, eqn. (9) becomes 

4 +p (K-A +E) -(I--P)(K--A +E) 
I 

I+ 

+ [p@}t+at + (1 -d(P),1 (19) 
in which p = 1 for backward-differences and I-( = 0.5 for the Crank-Nicolson 
differencing scheme. 

The problem of locating a pollution source from limited well data is to 
identify the source vector (p ) in eqn. (9) or (19) for some given entry values 
in the concentration vector {c } at some discrete instant in time. The method 
to be introduced for the identification is the method of system sensitivity. 

Method of system sensitivity 
Let {U }t be the measurement vector of concentration from m observation 

wells at time t, then 

w, = Jw, (20) 
where F is the location matrix of the observation wells. If {C ) t represents 
the estimate of {u } t using an estimated (p } in eqn. (9), i.e., 

M(g)+ (K-A +E){E} = (p} (21) 

and 

{G} = F(Z), (22) 

the error between the estimates and the measurements at time t is 

CJt = {u-ii); {U-U”}t. (93) 
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The system sensitivity theorem [ 111 provides a recurrence formula for 
(p” } , (estimate of Cp ) ), for the next time step in a manner so as to minimize 
Jt . When Jt approaches a minimum value, cp” } approaches to real Ip ) . 

G7) t+At = @It --A t (24) 

in which A is the step size, ranging between 0 and 1 for normalized elements. 
Differentiating eqn. (23) with respect to Cp } leads to 

aJ I-I ap t 
= 2(u--u”}TF $ 

1 I t 
(25) 

The matrix [ac/ap] can be obtained from eqn. (9) as follows. Differen- 
tiate eqn. (9) with respect to {p ) , then 

--I=O, (26) 

where I is an identity matrix. Using the finite difference scheme for the time 
derivative, eqn. (26) becomes 

& +p (K-A +E) - (l--r_1)(K--A 

Note that [k/ap] t+at is a matrix and it is convenient to express eqn. (27) as 
a system of linear equations with unknowns { ac/?~pi } t+A t : 

C ; +Er -(I--p)(K--A+E) 
i=l,2,...,n (28) 

in which 

and n is the number of nodal points. The system equation can easily be 
solved because all { ac/api ) t+A t have the same constant coefficient of 
(M/At + K -A -E) which is needed to be triangularized only once. 

Overview of the computational procedures and the computer program 
DREXEL 

The flow diagram shown in Fig. 1 illustrates the dynamic iteration for the 
identification of (p} . 
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(24) 

(19) 

(28) 
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NO 
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Fig. 1. Flow diagram showing iteration procedure for identification of (p}. 

A computer program, DREXEL, has been developed based on the afore- 
mentioned algorithm. It is important that the groundwater pollution trans- 
port model incorporated in the computer program is numerically stable with- 
in reasonable accuracy. 
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In DREXEL three major options are implemented in order to achieve these 
goals, i.e., 
l conventional Galerkin scheme/upstream weighted scheme; 
l mass lumping technique/no mass lumping; 
l Crank-Nicolson scheme/backward time differencing. 

When the convection terms in eqn, (5) are as important as the dispersion 
terms, it is sometimes advantageous to use asymmetric weighting functions 
different from the interpolation functions in the spatial discretization 
(Huyakorn and Nilkuha [ 121, Heinrich et al. [ 131). Such an upstream 
weighted scheme has been shown to be adequate (Huyakom and Pinder 
[ 141). The problem of numerical oscillation associated with convectively 
dominated flow can then be overcome. 

In general, a backward-difference formulation for time derivatives provides 
the best numerical stability. However, the Crank-Nicolson scheme yields 
better results. Gureghian et al. [ 151 reported that, in many cases, the lumped- 
mass matrix would result in a better solution, in particular if it is used in 
conjunction with the central- or backwarddifference time marching. Under 
other circumstances, it is preferred to use the consistent mass matrix (mass 
matrix without lumping). Therefore, options of lumping/no lumping, and of 
different time differencing schemes are provided in the computer program. 

Methodology and results for source identification 

Unlike the conventional method of requiring numerous observation wells 
and samples, the methodology developed here is to analyze the available data 
at each time for each sequential well system using a numerical model called 
DREXEL. The outcome of the numerical model will indicate the favorable 
direction and/or location of additional well(s) for the next step. An operative 
method of such kind will substantially reduce the costs of not only the num- 
ber of required observation wells but also of the required number of samples 
at each specific well. 

For the development and the testing of the methodology using DREXEL, 
the error in the field data supplied to the computer runs must be known, or 
kept to a minimum, so that the testing results solely reflect the characteristics 
and the capabilities of the model. The tests were done by applying DREXEL 
to a site where the concentration of a pollutant species at observation wells 
was computer-generated, simulating a set of ideal field measurements. 

The methodology consists of several steps. They will be outlined first and 
then illustrated through an example. 

The procedure of the method is as follows: 
(1) Discretization of the site. 
(2) Computing the groundwater velocity field. 
(3) Organizing the concentration data sampled at the existing wells and 

execution of the first computer run of DREXEL. 
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Analyzing the source distribution vector (p } and proposing the next 
additional well(s) based on the analyses. 
Preparation of the new concentration data set and execution of the sub- 
sequent computer run of DREXEL. 
Repeating steps (4) and (5) until (p} does not vary compared with the 
previous computer run. The source location is then shown by (p } . 
Determination of the source strength. 

As an example, consider that a certain constituent of groundwater pol- 
lutant has been detected at three observation wells in a rectangular site (1800 
ft X 900 ft). The concentrations and the sampling time are shown in Table 1. 
For simplicity, the seepage velocity field through the aquifer is assumed 
steady and uniform with V, = 40 ft/day, V, = 1 ft/day and the dispersion 
coefficients are Dxx = 80 ft2/day and D,, = 10 ft2/day. A source is emitting 
the pollutant at a constant rate from an unknown location within the site. 
We want to identify the pollution source using the methodology just de- 
scribed. 

TABLE 1 

Normalized concentration data 

Well no. Cont. Cont. 
at time = t, at time = t, + 51 days 

23 9.16 x lo-’ 2.19 x lo+ 
73 3.25 x 1O-6 4.83 x 10-S 
78 1.15 x 1o-5 1.35 x 10-S 

Step 1. The site is discretized into 81 rectangular elements of equal size. 
The numbering system of the grid is shown in Fig. 2. 

Step 2. The velocity field is steady and uniform; V, = 4 ft/day and Vy = 
1 ft/day for all the nodes. 

Step 3. The time of origin is adjusted until the concentration measure- 
ments are best fitted to straight lines against time for each observation well. 
For this example problem, the time span between the first observations and 
the estimated time of origin is 21 days. The concentration data are then or- 
ganized and shown in Table 2. The input data file prepared accordingly is 
supplied to the computer for the execution of the first computer run of 
DREXEL. In the computation, the concentration at an observation well at 
any instant is approximated by linear interpolation between the two nearest 
consecutive measurements at that well. 

Step 4. The first run of DREXEL yields the source distribution vector 
{P?. 

At the end of 72 days the computed (p } is obtained and is plotted as in 
Fig. 3. The positive entry of (p ) is the source while the negative is the sink. 
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Fig. 2. The grid system. 

TABLE 2 

Input normalized concentration data for three wells 

Well no. Cone. Cont. Cont. 
at time = 0 at time = 21 davs at time = 72 dass 

23 0 9.16 x lo-’ 2.19 x lo-‘ 
73 0 3.25 x lo-‘ 4.83 x 1o-s 
78 0 1.15 x lo+ 1.35 x 10-s 

Fig. 3. Source distribution with three observation wells, nos. 23, 73 and 78. 
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The results represent the best combination of sources and sinks, which mini- 
mizes the sum of error squared between the estimated and the measured con- 
centration at the three observation wells. 

From Fig. 3 it can be seen that there are three primary sources with 
strength of about the same order of magnitude at nodes no. 23,73 and 78. 
Among them the source. at no. 23 is the strongest, suggesting that the search 
of pollution source location should begin in the neighborhood of node no. 23. 

Next we want to determine the direction relative to node no. 23 for pro- 
posing additional well(s), and whether it will be downstream or upstream of 
node no. 23. 

Should the real pollution source be upstream of no. 23, the concentration 
at no. 23 would be higher than that at no. 73 and at no. 78 for all time, be- 
cause the latter are further downstream of the source. However, the concen- 
tration data in Table 2 records the opposite. It becomes obvious that we shall 
propose a well drilled at node no. 34 (downstream of no. 23) for additional 
groundwater sampling. 

Step 5. A new set of concentration data including the new well at node no. 
34 is then compiled as shown in Table 3. DREXEL computes (p ) at the end 
of 106 days. The results are obtained and plotted in Fig. 4. 

I AY 

Fig. 4. Source distribution with four observation wells, nos. 23, 73, 78 and 34. 

Step 6. The fact that the strongest source point shifts from no. 23 to no. 34 
while the strength of the source at no. 23,73 and 78 reduces indicates that 
the proposed new well (no. 34) has been located in the correct direction 
(closer to the pollution source). Thus, the second well is proposed to be 
downstream of no. 34 (at node no. 45). 

Step 7. Another set of concentration data at the end of 128 days is pre- 
pared (Table 4) and (p} is computed by DREXEL. It is presented in Fig. 5. 
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TABLE 3 

Input normalized concentration data for four wells 

Well no. Cont. Cont. Cont. Cont. 
at time = 0 at time = 21 days at time = 72 days at time = 106 days 

23 0 9.16 x lo-’ 2.19 x 10-c 1.44 x 1o-5 
73 0 3.25 x lo-‘ 4.63 x lo-” 2.79 x 10-S 
76 0 1.15 x 10-s 1.15 x 1o-5 5.89 x lo-’ 
34 0 - - 1.08 x 1o-2 

Fig. 5. Source distribution with five observation wells, nos. 23, ‘73, 76, 34 and 45. 

Step 8. The strongest source point shifts further from no. 34 to no. 45 
and the strength of the source at all other nodes drops drastically. This shows 
a very favorable sign of the source being located. One more well is then pro- 
posed downstream of no. 45, at node no. 56. 

Steps 9 and 10. With the new,data set (Table 5) DREXEL again computes 
the source vector (p} ; it is shown in Fig. 6. This time the source point stays 
at no. 45 and the general pattern of the distribution is identical to the previ- 
ous one. Thus, the source location is identified to be at node no. 45. 

Step I 1. The source strength is determined using the other version of the 
computer code DREXEL for computing pollution transport only. Since the 
source location has been identified, a numerical simulation can be performed 
using DREXEL to obtain the distribution of the concentration at any given 
time. 

At node no. 45 a source strength (=572), obtained from step 10, is assigned 
for the initial simulation run. The simulated results at each well compare 
quite well with the observation values except that they are off by an almost 
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Fig. 6. Source distribution with six observation wells, nos. 23, 73, 78, 34,45 and 56. 

constant factor of about 2. Next, the source strength is adjusted (to 929), 
until the simulated and the measured concentrations at the observation wells 
are in good agreement. 

Conclusions and recommendations 

The general problem of locating a pollution source by having data from a 
limited number of observation wells is quite challenging, yet worthwhile, due 
to the shorter time and lower costs involved over the conventional method 
of pollutant contour mapping. The basic tool used for this purpose is the 
finite element method (FEM). While a good deal of information exists on this 
subject as far as taking a known source and mapping out its migration is con- 
cerned, the inverse problem of finding the source from a limited number of 
observation points is more difficult. This concept was used in this study. 

A still more important point is that of the available methodologies, the 
application of a systems approach (as described herein) being a new solution 
technique. With a steady-state flow field assumed, the system control equa- 
tion is linear and the criterion function can be minimized to an arbitrarily 
selected value. 

The method of system sensitivity was described in the paper along with 
related theoretical considerations. The analytic formulation was the basic ob- 
jective of an earlier paper [ 81 although parts were repeated hem for the sake 
of clarity. This paper extended the work to the solution of a hypothetical 
problem. Its solution was seen to accurately identify a pollution source with 
a minimum number of iterations. Thus, armed with a computer code, 
DREXEL, actual field data will be used for Part 2 of this overall program. 

Extension beyond this point will be the adaptation of the code to the 
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three dimensional problem: first, a test of feasibility with hypothetical data, 
then evaluation with real field data. 

Hopefully, the completed program will identify pollution sources from data 
from a very small number of monitoring wells. The final program also holds 
the promise of being able to locate where additional wells should be located 
for an on-going pollution scheme. 
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